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Modelling of turbulent passive-scalar diffusion is studied using the statistical results 
from a two-scale direct-interaction approximation. In this model, the mean scalar, 
the scalar variance and the dissipation rate of scalar variance constitute fundamental 
diffusion quantities. The turbulent scalar flux is written in the form of an anisotropic 
eddy-diffusivity representation. This representation, paving the way for explaining 
anisotropic heat transport, is tested against typical experimental data. The present 
model equation for the dissipation rate of scalar variance also gives a theoretical 
justification for the existing equations that are adopted in the second-order 
models. 

1. Introduction 
In the study of scalar diffusion (for instance, temperature diffusion) in turbulent 

shear flows, numerical simulation based on some kind of turbulence model is 
becoming quite useful with the rapid progress of computers. Among various levels of 
models. those of eddy diffusivity as well as eddy viscosity, represented by the k-e 
model, are most popularly used, mainly owing to the simplicity of model. In  almost 
all eddy-diffusivity models, the turbulent scalar flux is modelled using the concept of 
isotropic eddy diffusivity. A drawback of such models is that they cannot predict the 
anisotropy of turbulent scalar flux that arises from the mean velocity gradient. 
Moreover, the dependence of the turbulent Prandtl number on the molecular Prandtl 
number cannot be explained by most of those models. 

In  order to overcome such difficulties, second-order models have been developed, 
where no modelling of Reynolds stress and scalar flux is done. A representative model 
for passive-scalar diffusion is that of Newman, Launder & Lumley (1981). This model 
was extended by Elghobashi & Launder (1983) to apply to the thermal mixing layer. 
Various models for scalar diffusion are reviewed extensively by Rodi (1980). One 
major complexity of the second-order models is that third-order correlations 
concerning the velocity and scalar as well as the scalar-pressure-gradient correlation 
should be modelled using second-order quantities. Such modelling inevitably 
introduces uncertainties that are not encountered in simple eddy-viscosity and eddy- 
diffusivity models. 

A big obstable common to k-e and second-order modelling is that  there has been 
no theoretical justification of the model equation for the dissipation rate of scalar 
variance using two-point closure theories such as the direct-interaction approxi- 
mation (DIA). This situation not only makes the mathematical base of scalar- 
diffusion models uncertain, but it also becomes a big obstacle when some additional 
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effects such as buoyancy are incorporated into existing models. Therefore, it is 
important to study the statistical modelling of turbulent scalar diffusion by using 
two-point closure theories. In  particular, the recent progress in large-eddy and full 
simulations is increasing the importance of such statistical modelling, for model 
constants can be determined using those simulations once the form of model is 
suggested by two-point closure theories. 

The statistical study of turbulent flows with mean velocity and temperature 
gradients by two-point closure theories was initiated by Kraichnan using DIA 
(Kraichnan 1959, 1964). In  the case of a velocity gradient, this pioneering work was 
extended by Leslie (1973) using two coordinate systems, the centroid and difference 
coordinates. The author then combined DIA with a scale-parameter expansion 
method from perturbation methods to formulate a two-scale DIA (TSDIA). Using 
TSDIA, an anisotropic eddy-viscosity representation for the Reynolds stress was 
derived leading to the possibility of explaining the anisotropy of turbulent intensities 
within the framework of k-s modelling (Yoshizawa 1984b). This representation has 
been applied to channel and duct flows, and its usefulness has been confirmed 
(Nisizima & Yoshizawa 1987 ; Speziale 1987). A theoretical justification was also 
given to model equations for the dissipation rate of turbulent kinetic energy that are 
used in both the k - ~  and the second-order models (Yoshizawa 1987). 

In  this paper, we make use of the results from TSDIA to overcome some 
deficiencies of eddy-diffusivity models in scalar turbulent diffusion. Namely, we 
derive a coupled system of model equations for the mean scalar, the scalar variance 
and the dissipation rate of scalar variance, into which an anisotropic eddy-diffusivity 
representation for the turbulent scalar flux is incorporated. Some of the present 
results are shown to give a theoretical justification to existing model equations that 
have been applied with some success to real simulations. Also, the anisotropic eddy- 
diffusivity representation is tested directly using experimental data of Tavoularis & 
Corrsin (1981, 1985), and its usefulness is confirmed. 

2. Ensemble-mean form of the fundamental equations 

their fluctuations by uf and 8’. Then, the equation for 0 is 
We denote the ensemble mean of the velocity and passive scalar by U and 0, and 

where K is the molecular scalar diffusivity, H is the turbulent scalar flux defined 

H = - ( e w ) ,  (2) 
by 

(( ) denotes the ensemble mean), and the summation convention is adopted for 
repeated superscripts. 

The scalar variance characterizing the intensity of scalar fluctuation, which is 
given by 

k0 = (6’>, (3) 

satisfies 
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Here, the production term Po, the dissipation term eo (dissipation rate of scalar 
variance), and the diffusion term Dkg are respectively defined as 

In the present passive-scalar diffusion the counterparts for the velocity field are 
given by 

with the solenoidal condition 

In  (S), 
and the Reynolds stress Rap is defined by 

is the mean pressure divided by fluid density, v is the kinematic viscosity, 

Rap = - (ufaufp). ( 1 1 )  

In (9 ) ,  the turbulent kinetic energy k, the production term P, the dissipation term e 
and the diffusion term Dk are written as 

k = +( ( u ’ ~ ) ~ ) ,  ( 1 2 )  

(p’ is the fluctuation of the pressure). 

3. Statistical modelling 
3.1. Xtutistical results from TSDIA 

A two-scale direct-interaction approximation (TSDIA) has already been applied to 
the investigation of an anisotropic eddy-diffusivity representation for the turbulent 
scalar flux and to the calculation of other important quantities (Yoshizawa 1984a, 
1985b). For the modelling of scalar diffusion that follows, let us summarize the 
results obtained previously. A brief summary of the theoretical framework of TSDIA 
is given in the Appendix. 
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The scalar variance k,  of (3) can be written as 

using the characteristic length I, in scalar diffusion, where numerical factors are 
estimated as 

a,, % 0.365, z 0.0493, akOr % 0.0227, kkOl ,  % 0.194. (17)  

Roughly speaking, 1, means the largest spatial scale of scalar fluctuations, and is 
similar to the concept of integral scale used frequently (for its more detailed 
definition, see the Appendix). We should point out that the first term in (16) comes 
from the zeroth-order analysis in the scale expansion of TRDIA, whereas the 
remaining three come from the first-order analysis. 

The turbulent scalar flux H is given by 

ao ao 
ax. aXa 

H a  = K,-+K::- 

Here, the first term gives the familiar isotropic eddy-diffusivity representation, and 

(19) 
K, is written as 4 1  

K, = a l Z @ ,  

where aK z 0.0597. (20) 

K O  

The second term represents the anisotropic scalar diffusion generated by shear flows, 
and the anisotropic eddy diffusivity ei is expressed as 

where uKA 8.92 x lop3, aLA % 0. ( 2 2 )  

I n  TSDIA, we have approached vanishing aiA, which means that K@ is a symmetric 
tensor. As will be discussed later, the experiment by Tavoularis & C'orrsin (1985) 
shows that it is not symmetric, although its asymmetry is not so strong; so, we shall 
retain the antisymmetric part in (21) to use in constructing a more accurate model 
relation for .",!'A. 

Noticing that the first and the remaining three terms in (16) are of the zeroth and 
the first orders in the TSDIA scale expansion, respectively, we solve (16) with respect 
to I, to obtain 

1, = C l l , k ~ € , ~ & + c L " k / ,  k? ;e ,2 .5-  -5 LDk, 
Dt 

(23) 

where Cl0 = 4.53, C1,,/, % 14.8, C1( ]~ / ]  % 12.4. C'l()a % 3.80. (24) 

This relation will play a key role in the modelling of scalar diffusion based on li, and 
e, t'hat follows. 
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3.2. Modelling of the e# equation 
I n  turbulent scalar diffusion, l,, k,  and e, are very important quantities as the bulk 
properties of the diffusion process. I n  the model, we can choose any two of them since 
these three quantities are equivalent through (16) or (23). In  other words, one model 
based on kH and e, should be transferable with another model based on, for instance, 
k,  and 1,. This principle of the transferability of models requires an algebraic 
relationship among I,, k,  and e,. So we impose 

(25) 
3 -3 1 1, = CEO ki 6 , ~  €2 

by retaining only the first term in (23). As a result, we have 

where A& = cl,k,/Cl,cs = 1.20, ( 2 7 )  

A'#" = ClutIClsEs x 0.306. (28) 

Equation (26) shows that a model equation for e, can be constructed from the 
model equations for k,  and E ,  with the aid ofa  differential transformation. The above 
method has already been applied to  the velocity field, and a model equation very 
similar to the e-equation in the k-e and the second-order models has been obtained 
(Yoshizawa 1987). Thus, we have 

DE e €2 
- = C,,-P-C,,-+D,, Dt k k (29) 

where C,, = 1.7, C,, = 1.7, (30) 

and the remaining term D, is mainly related to  the diffusion effect, and will be 
referred to later. In  the familiar k--E: and second-order models, C,, and C,, are 
optimized as 

C,, x 1.45, C,, z 1.9 (31) 

(Bradshaw, Cebeci & Whitelaw 1981), which are close to (30). 
We combine (26) with (4) for k,  and (29) for E .  Then, we obtain 

where DEs is given by 

Numerical factors are estimated as 

CEO1 = CEsa z 1.20, C,, = CEO4 = 0.520, 

using the theoretically estimated values (27), (28) and (30). 

(32) 

(33) 

(34) 
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3.3. Anisotropic eddy d$fusivity 
Using (as), tfhe isotropic and anisotropic eddy diffusivities of (19) and (21) are 
expressed as 

K ,  = C,k;ei2e,  (35) 

respectively, where C, x 0.446, C,, z 0.183, C:, x 0. (37) 

Corresponding to (18) with (35) and (36), the anisotropic eddy-viscosity 
representation for the Reynolds stress is given by 

(Yoshizawa 1984b), where 6ap is the Kronecker delta symbol, the eddy viscosity v, is 
written as 

v, = C"k2e-I) (39) 

with c,, x 0.078, (40) 

and rap represents the anisotropic effect generated by the mean velocity gradient. 
From (35) and (39), the turbulent Prandtl number Pr, is 

Pr, E v e / q  = (C,/C,)r2. (41) 

Here, r is the ratio of the velocity dissipation t,imescale to the scalar one, which is 
defined by 

= (:)/(:). 
As will be discussed later, r is an important quantity leading to the space and time 
variation of Pr,. 

3.4. Xummary  of the anisotropic k,-c,  model 
Summarizing the results obtained above, we reach the following system of equations 
for passive-scalar diffusion : 

(a )  (1)  for the mean scalar 0; 
(b) (18) for the scalar flux H with (35) (isotropic eddy diffusivity) and (36) 

( c )  (4) for k, with Dk, modelled appropriately : 
( d )  (32) for e, with D, modelled appropriately. 
Here, we should mention the reliability of the present system and the model 

constants in it. This system is founded on TSDIA and its additional simplification 
(see the Appendix), and is not free from the inherent limitations arising from them. 
Therefore, the results should be regarded as indicative only. In  particular, the model 
constants should be viewed as an approximation when optimizing them in actual 
simulation. As will be shown later, however, some of these results give a mathematical 
justification to the empirical relations that have already been confirmed as working 
well. 

(anisotropic eddy diffusivity) : 
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4. Discussion 

In  models of the k--E type, the isotropic eddy diffusivity K, is often modelled as 

4.1. Turbulent Prandtl number 

K, = c: k2€-', (43) 

corresponding to the isotropic eddy viscosity v,. Expression (43) can be derived if 
1, in (19) is made equal to the velocity counterpart that is given by 

1 = C, k k l ,  (44) 

where C, is estimated as C, x 1.84 (45) 

C: x 0.135 (46) 

from TSDIA (Yoshizawa 1984b). C: in (43) is now 

(Yoshizawa 1984a), which should be compared with the value 0.1 adopted usually. 
In relation to (43), we should point out the following facts. One is the decoupling 

of (1)  from (4) since K, is expressed in terms of k and E only. The reliability of this 
decoupling is rather questionable since the scalar flux H depends on scalar 
fluctuations whose intensity is determined by (4). Another is the independence of the 
turbulent Prandtl number Pr, of the molecular Prandtl number P r ( =  v/.). In 
reality, from (39) and (43) we have 

Pr, = C,/C:, (47) 

which is constant so long as some sort of dependence of C: on Pr is not assumed. 
Experiments show, however, the considerable dependence of Pr, on Pr.  

The above two points stem solely from the approximation 

I ,  x 1. (48) 

1/1, = AT:, (49) 

where A = C,/C,@ w 0.506. (50) 

In the present paper, from (25), (42) and (44) we have 

In  the experiment on grid turbulence by Warhaft & Lumley (1978), r varies between 
0.67 and 2.38, and depends on the ratio of the initial lengthscales of velocity and 
temperature. This dependence was also examined by Durbin (1982) using a 
Lagrangian statistical model of particle dispersion (Durbin 1980 ; Stanpountzis et al. 
1986). These results suggest that (48) is valid only in a very limited situation. 

From (49), we have 

with C, x 1.57. (52)  

Herring et al. (1982) used some two-point closure theories such as DIA to investigate 
the dependence of r on the ratio of velocity and temperature integral scales L, and 
L,. These two integral scales are a little different from our I and 1, in definition, but 
the two pairs (I, 1,) and (L,, L,) are very similar in that they give a measure of the 
lengthscales around which the spectra of kinetic energy and scalar variance have 
their peaks. For large Reynolds numbers, Herring et al. found 

r = 1.63(LV/L,)~. (53) 
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The coincidence between (53) and (51) with (5%) is remarkable even after making 
allowances for the difference in the definition of the lengthscales. In turbulent flows 
with mean fields, 1 and I, are closely associated with the state of those fields. So, r is 
considered to change in space and time. 

In  order to eliminate the above difficulty concerning Pr, within the framework of 
eddy-diffusivity modelling, Nagano & Kim ( 1987) proposed 

K, = C;(P/E)  r-t (54) 

K, = C, (k2 /e )  r-'. (55) 

(C,N ( =  0.156) is a model constant), which should be compared with our counterpart 

Nagano & Kim used (54) to examine the heat transfer in wall turbulent flows, and 
showed that (54) is capable of explaining the measured dependence of Pr, on Pr. The 
model (54) is not always justified from the statistical viewpoint, as can be seen from 
(55) .  However, Nagano & Kim's work is interesting as an attempt to incorporate the 
r-dependence into K,. 

4.2. T h e  €0  equa,tion 
A model equation for e, plays an important role in both the k,e, eddy-diffusivity and 
second-order models. Let us compare the present e, equation with the counterpart 
that  has been developed by Newman et al. (1981) and by Elghoboshi & 
Launder (1983) using the second-order modelling. I n  the latter two works, the second 
P-related term in (32), which represents the effect from the velocity production term, 
is not taken into account. Newman et al. optimized the model constants as 

Ccsl x 1.0, C,, x 1.01, CEo4 x 0.88, (56) 

Ctol x 0.9, CCUY Fz 1.1 ,  Cto( x 0.80. (57) 

using our definition for eo and P,. Elghobashi & Launder proposed 

It is noteworthy that (34) obtained from a purely statistical method is close to (56) 
and (57). Moreover, Nagano & Kim (1987) proposed inclusion of the second P-related 
term in (32), and optimized Ccoo as 

Ctg2 x 0.72, (58) 

as well as (57). Equation (58) is also close to the present value 0.52 in (34). From these 
results, it may be concluded that a theoretical justification has been given by a two- 
point closure theory to the model eo equation that has been successfully used in the 
eddy-diffusivity and second-order models. I n  particular, the above comparison 
shows the reason why the optimized values CtRl and Ctot or C,, and Cto4 are close to  
each other. 

The present derivation of the model E@ equation is not merely interesting in that 
an empirically constructed model equation can be justified using a closure theory. It 
also gives a clear guiding principle for incorporating effects such as those of buoyancy 
and MHD, the terms for which were difficult to  forsee from the existing e, equation. 
The principle may be summarized as follows : 

( a )  we first calculate k, with such effects, as in (16) ; 
( b )  we insert it into an expression for I ,  such as (23) ; 
( c )  from the transferability principle, we require an algebraic relation such as (25 ) ,  

For instance, let us consider that the buoyancy effect adds the Boussinesq term 
which leads to a model e, equation with the additional effects incorporated. 
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A @  into the right-hand side of (8), where A = - yg in terms of the thermal expansion 
coefficient y and the gravitational acceleration vector g. Then, TSDIA suggests that 
a term proportional to  

should be added to the existing e, equation. 
In  order to model the remaining diffusion-like term D,, in (32), we need to model 

D, and Dko, as is seen from (33). In  the previous derivation of the model e-equation, 
it was shown (Yoshizawa 1987) that D, can be modelled, in the most general form, 
as 

A-QB (591 

using the following model relation for Dk 

Here, c,, CEk, . . . , c k ,  are model constants. In  the usual model, only the first terms in 
(60) and (61) are retained. The second term in (61), expressing the diffusion effect 
from e,  was first pointed out by Leslie (1973), and then by Yoshizawa (1982). The 
importance of the second terms in (60) and (61) or the cross-diffusion terms has been 
clarified by Takemitsu (1987), who applied the k-e model including such effects to  
channel flows. As a result, it was shown that the local minimum of ve on the 
centreline, which cannot be predicted by the usual k-e model, can be simulated 
accurately. 

Regarding the modelling of Dkg, TSDIA gives (Yoshizawa 1 9 8 4 ~ )  

where the numerical factors are 

ak8e % 1.77 x low3, % 0.0814, akolo % 0.0106. 

From (25) and (62), Dko of (7) is modelled as 

and the K-related term has been neglected. In  the usual model, only the first term of 
(64) is retained. For the temperature transport in channel flows, however, the third 
of the three terms exerts the greatest influence (S. Nisizima, private communication). 
This fact can be easily understood from the situation where E becomes very large near 
the wall since e is proportional to  y-I (y is the distance from the wall) in the 
logarithmic-velocity region. 

We substitute (60) and (64) into (33) to obtain Dt,, which includes the diffusion and 
cross-diffusion terms 
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Quantity x / h  = 7.5 x/h = 9.5 x / h  = 11  Units 

d@ldY 9.5 9.5 9.5 "C m-l 
k 0.268 0.358 0.444 m2 s - ~  
€ 1.94 2.65 3.42 m2 s - ~  

o c 2  g-l 
4 3  
€8 0.25 0.30 0.35 
(fU'> 0.0306 0.0400 0.051 O C  ms-l 
(fV'> -0.0145 -0.0184 -0.023 "C ms-' 

TABLE 1.  Data by Tavoularis & Corrsin (1981) 

dl'/dy 46.8 46.8 46.8 S-1 

0.0119 0.0134 0.0156 O C 2  

Besides (66), however, DEg contains terms that cannot be classified using the familiar 
concepts of production, dissipation and diffusion, for instance terms such as 

This situation was also encountered in the diffusion term D, in the e-equation, (60). 
At the present stage, it is not clear which terms are indispensable in (66), (67), etc. 
This point is left for future work based on the practical application of the present 
model. 

4.3. Anisotropic eddy-diflusioity representation 

I n  the present k6-s model, the anisotropic eddy-diffusivity representation (18) with 
(35) and (36) plays a key role. So, let us test this model representation by using 
experimental data from a relatively simple flow situation. This kind of test of model 
relation has also been performed by Leslie (1980) for the modelling of the 
pressure-strain correlation. 

Temperature transport in turbulent flows with a constant mean temperature 
gradient has been examined experimentally in detail by Tavoularis & Corrsin (1981, 
1985). There, special attention was paid to the anisotropic temperature transport 
arising from the constant mean velocity gradient. The anisotropic part gi of our 
eddy diffusivity, which is given by (36), is closely related to the mean velocity 
gradient. Further, the Reynolds number R, based on the Taylor microscale in 
Tavoularis & Corrsin's data is about 200-270. So it is relevant to compare their data 
with the present result based on the concept of fully developed turbulence. 

In this subsection, the mean and fluctuating velocity components in the x-, y- and 
x-directions are denoted by ( U ,  V ,  W )  and (u', u', w'), respectively. In Tavoularis & 
Corrsin's experiments, the mean velocity and temperature are given as 

dU dO dO 
- = constant, - or - = constant, dY dy d:: 

V = W = 0. 

They measured various important turbulence properties at three points downstream 
of the shear generator and heating system of square-duct type (the side of the square 
duct is denoted by h) .  

Tavoularis & Corrsin's (1981) data are summarised in table 1 in our notation. Here, 
we should briefly discuss 6, (our e, is twice the scalar dissipation rate of Tavoularis 
& Corrsin). Accurate measurement of eo is very difficult in general. Tavoularis & 
Corrsin measured it by two methods: the budget equation of k, ;  and a direct 
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FIGURE 1. - ( 0 ' 2 ' ' )  : , Tavoularis & Corrsin (1981) ; 0, present model (70) ; + , Nagano & 
Kim's (1987) model (54); A, standard model (43). 

measurement using temperature derivatives. The values for B, thus found do not 
coincide. In table 1, we have adopted the value obtained by the former method 
because, in the direct measurement of e,, small fluctuations must be resolved more 
accurately than with the method based on the budget equation, and so B* from the 
direct measurement tends to become smaller than E ,  by the budget equation. The 
author considers that the latter is more reliable. Moreover, B in table 1 was measured 
from the budget equation for k. So, making allowances for the self-consistency 
concerning the measurement of the dissipation rates of k and k, we adopted E ,  from 
the budget equation. 

In the flow configuration (68), our representation (18) with (35) and (36) gives 

k3 dUdO 
(O'u') = (C,,+C:,)$E----, 

( e w )  = -c de-. 

€8 dy dy 

k2 dO 
' E :  dy 

Of these two expressions, (70) corresponds to isotropic eddy transport, whereas (69) 
is the anisotropic eddy transport given rise to by the mean velocity gradient. 

Let us first compare (70) with the experimental results by Tavoularis & Corrsin 
(1981). The comparison is shown in figure 1. In  the figure, we have included the 
results that are obtained by the familiar representation (43) with C: x 0.1 and by 
Nagano & Kim's (1987) model (54) with C: x 0.158. Our results are fairly good. It is 
rather surprising that the popularly used representation (43) gives values that are 
too large. 

Next, we proceed to the anisotropic heat transport part about which the isotropic 
eddy-diffusivity representation for H can say nothing. The comparison is given in 



552 A .  Yoshizaura 

::::I 
0.04 

1 .  ( B ’ U ’ )  

0.02 

O ’ O 3 I  0 

0 

0 

0 1  ’ I I I I 
I 8 9 10 11 

x l h  

FIGURE 2. (flu‘): 0 ,  Tavoularis & Corrsin (1981); 0, present model (69) with C:, z 0;  
0 ,  present improved model (69) with (72). 

figure 2. The present model (69) with C:, M 0 does predict positive anisotropic heat 
flux. Its magnitude is, however, half the experimental value. The cause of this 
discrepancy is inferred as follows. First, the model constant C,, in (37) is estimated 
using the inertial-range simplification, and is not free from the numerical inaccuracy 
arising from it. Second, our anisotropic eddy-diffusivity tensor K Z ~  is symmetric since 
C:, z 0. Tavoularis & Corrsin (1985) carried out a quasi-Lagrangian analysis based 
on their experimental data to suggest that K E ~  is not symmetric. 

To correct this inadequacy, let us retain both C,, and C:, to construct a more 
reliable model for K ; { .  To estimate those constants, we make use of (O’u’) a t  
x/h = 11 in figure 2 and Tavoularis & Corrsin’s estimate of the asymmetry of ci 
a t  x/h = 11. From those data, we have 

which lead to CK, x 0.29, C:, x 0.08. (72) 

It is noteworthy that C:, in the antisymmetric part is about one-quarter of C,, in 
the symmetric part. Using (72), we calculate (flu’) at x/h = 7.5 and 9.5. These 
results are also included in figure 2. The agreement with the data is satisfactory. 
Therefore, it can be expected that the present anisotropic representation, particularly 
the improved version with (72), is useful in the actual simulation of heat transfer. 

Finally, we refer to the counter-gradient diffusion effect. This effect is often seen 
in combustion phenomena, and comes from the situation where the zeros of the 
turbulent heat flux and the mean temperature gradient do not coincide with each 
other. In such a situation, the buoyancy force often plays a key role, and some 
buoyancy-related terms should be added to the present representation (18) for H. For 
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instance, under the Boussinesq approximation TSDIA suggests that the terms 
proportional to 

A ,  ( A * V )  u, V ( A .  u) (73) 

should be included in H,  where A is a parameter used in (59). The study of counter- 
diffusion effects based on such an improvement is left for future work. 

5. Conclusion 
In this paper, we have derived a turbulence model for the diffusion of a passive 

scalar in a deductive manner. The major results can be summarized as follows. 
( a )  A model for the isotropic eddy diffusivity that accounts for the dependence of 

turbulent Prandtl number on molecular Prandtl number was obtained. 
( 6 )  A model for the anisotropic eddy diffusivity was obtained, which is related to 

mean velocity gradient and can explain anisotropic heat transport observed 
experimentally. 

(c) A theoretical justification was given to the model equation for the dissipation 
rate of scalar variance that is very important in both the existing eddy-diffusivity 
and second-order models. This justification paves the way for incorporating 
additional effects such as buoyancy and MHD effects in a systematical manner. 

The author is grateful to the referees for the improvement of the presentation of 
this paper. This work was partially supported by a Grant-in-Aid for Scientific 
Research from the Ministry of Education. 

Appendix. A brief summary of TSDIA 
TSDIA was originally formulated for the calculation of the Reynolds stress Rap 

and other important properties such as the triple velocity correlation in turbulent 
flows with mean velocity gradient (Yoshizawa 1984b, 1 9 8 5 ~ ) .  This formalism has 
been extended to MHD turbulent flows closely associated with controlled fusion 
physics (Yoshizawa 1985c, 1988). 

TSDIA may be summarized as the following five key steps. 
( a )  A small-scale parameter S that disappears automatically in the final stage of 

analysis is introduced, using which two space and time scales are defined as 

< ( = x ) ,  X ( = ~ X ) ;  7 ( = t ) ,  T ( = S t ) .  (A 1) 

Here, ({,7) express the rapid space and time variation of fluctuations, whereas 
( X ,  T )  express the slow variation of mean fields. Using (A l) ,  a quantity f with mean 
F and fluctuation f ’  is written as 

f = F ( X ;  T )  +f’(<, x; 7, T), (A 2) 

where f ,  F and f ’  denote (u, 8 , p ) ,  ( U ,  0, p )  and (u’, 8‘. p’) ,  respectively. 

variable 6 :  
(b)  The fluctuation f ‘ is written in the Fourier representation of the rapid space 

f ’ ( { , X ;  7 , T )  = f ” ( k , X ;  7 , T )  exp[-iik-(<- U ~ ) ] d k .  (A 3) s 
( c )  f “  is expanded using the scale parameter 6 as 

m 

f ” ( k ,  x; 7, T )  = z Sy; (k ,  x; 7, T). 
n=O 
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Consequently, f i  (n 2 1) can be expressed in terms of f ;I, the response functions 
associated with f ;I, and the mean-field gradients. The equation for the lowest-order 
field f ;I does not depend on the mean field directly, but the dependence off 0” on the 
mean field is retained through X and I’. This lowest-order field is called the basic 
field. 

( d )  Using (A 4), various bulk properties such as Eafl and H can be calculated with 
the aid of DIA (Kraichnan 1959, 1964). At the present time, the basic field is 
regarded as isotropic with the inhomogeneity through X .  

( e )  Expressions obtained for Rap, etc. are very complicated as they are since they 
are written in terms of two-time velocity covariance, the response functions, etc. of 
the basic field. So, we perform a simplification based on the inertial-range concept: 
the scalar and velocity covariances, and the response functions are approximated by 
their inertial-range form. For instance, the low-wavenumber part of the scalar basic 
field is estimated by extending the lower limit of the inertial-range spectrum to a 
characteristic wavenumber k,. The present characteristic scalar length I, in (16) or 
(23) is related to k, as 

(A 5) k, = 2n&. 

As can be seen from (18) for H a n d  (38) for Rap, the results from TSDIA have the 
following prominent properties. In  the zeroth-order analysis with respect to the scale 
parameter 6, the results are not related directly to mean-field gradients, as in the first 
term of (38). I n  the first-order analysis, the terms including the first derivatives of 
mean field appear. Moreover, in the second-order analysis the results associated with 
the products of the first derivatives of the mean field or the second derivatives are 
obtained, which lead to the anisotropic eddy-viscosity and eddy-diffusivity terms in 
Rap and H. 

From these properties we may conclude that TSDIA is a systematic method for 
performing the derivative expansion with respect to mean field. I n  this sense, TSDIA 
is very similar to Leslie’s (1973) pioneering work on turbulence with a mean velocity 
gradient. I n  that work, the two-coordinate system based on the centroid and 
difference coordinates is introduced a t  the start of the analysis. This coordinate 
system, however, is not always appropriate to the direct treatment of a fluctuating 
field as in steps ( a d )  (for a more detailed discussion, see Yoshizawa 1985b), but it 
becomes useful in the analysis of correlation functions in combination with the 
spherical harmonics expansion method. 
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